Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism.
نویسندگان
چکیده
5'AMP-activated protein kinase (AMPK) can be activated in response to cellular fuel depletion and leads to switching off ATP-consuming pathways and switching on ATP-regenerating pathways in many cell types. We have hypothesized that AMPK is a central mediator of insulin-independent glucose transport, which enables fuel-depleted muscle cells to take up glucose for ATP regeneration under conditions of metabolic stress. To test this hypothesis, rat epitrochlearis muscles were isolated and incubated in vitro under several conditions that evoke metabolic stress accompanied by intracellular fuel depletion. Rates of glucose transport in the isolated muscles were increased by all of these conditions, including contraction (5-fold above basal), hypoxia (8-fold), 2,4-dinotrophenol (11-fold), rotenone (7-fold), and hyperosmolarity (8-fold). All of these stimuli simultaneously increased both alpha1 and alpha2 isoform-specific AMPK activity. There was close correlation between alpha1 (r2 = 0.72) and alpha2 (r2 = 0.67) AMPK activities and the rate of glucose transport, irrespective of the metabolic stress used, all of which compromised muscle fuel status as judged by ATP, phosphocreatine, and glycogen content. 5-Aminoimidazole-4-carboxamide ribonucleoside, a pharmacological AMPK activator that is metabolized to an AMP-mimetic ZMP, also increased both glucose transport and AMPK activity but did not change fuel status. Insulin stimulated glucose transport by 6.5-fold above basal but did not affect AMPK activity. These results suggest that the activation of AMPK may be a common mechanism leading to insulin-independent glucose transport in skeletal muscle under conditions of metabolic stress.
منابع مشابه
Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK).
In the rat liver epithelial cell line Clone 9, the V(max) for glucose uptake is acutely increased by inhibition of oxidative phosphorylation and by osmotic stress. By using a membrane-impermeant photoaffinity labelling reagent together with an isoform-specific antibody, we have, for the first time, provided direct evidence for the involvement of the GLUT1 glucose transporter isoform in this res...
متن کاملThe Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat
Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...
متن کاملبررسی اثر کورکومین بر میزان فسفریلاسیون AMPK وACC در سلولهای ماهیچهای رده C2C12
Introduction: AMP activated protein kinase (AMPK) as key regulators of cell metabolism, plays a major role in the activation of catabolic pathways, such as glucose transport and fatty acid oxidation. Thus, activation of this pathway can be used in the treatment of diabetes and metabolic syndrome. Many studied proposed the effectiveness of the polyphenols present in rhizomes of turmeric (curcumi...
متن کاملβ-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK).
The AMP-activated protein kinase (AMPK) is an αβγ heterotrimer that acts as a master metabolic regulator to maintain cellular energy balance following increased energy demand and increases in the AMP/ATP ratio. This regulation provides dynamic control of energy metabolism, matching energy supply with demand that is essential for the function and survival of organisms. AMPK is inactive unless ph...
متن کاملGlucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio
BACKGROUND Genetic studies of Saccharomyces cerevisiae have shown that Snf1p and Snf4p, which together form the SNF1 complex, are essential for gene derepression on removal of glucose from the medium. However the metabolic signal(s) involved, and the exact role of SNF1, have remained enigmatic. Recently, the AMP-activated protein kinase (AMPK) was shown to be the mammalian homologue of SNF1. AM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 49 4 شماره
صفحات -
تاریخ انتشار 2000